

CONDENSATION HOODS JKI

Operating, maintenance and adjustment

TABLE OF CONTENTS

PERATING AND MAINTENANCE	
CONSTRUCTION	04
CLEANING OF SUPPLY AIR UNITS	05
CLEANING OF THE HOOD	05
CLEANING OF THE CONDENSATE BAF	FLES05

ADJUSTMENT

0

ADJUSTMENT DIFFUSION PATTERNS SU	PPLY
AIR	06
PLACEMENT OF MEASUREMENT TAP	07
ADJUSTMENT OF EXHAUST AIR FLOW	08
ADJUSTMENT OF SUPPLY AIR FLOW	09

Jeven

JEVEN CONDENSATION HOODS

Jeven's condensation hoods are a hood that is specially developed for handling condensed water in processes where a lot of water vapor is formed. The condensation hoods has a unique water and vapor separation baffle structure, condensate baffles and edge grip on both long sides. Thanks to the modular design of the hoods, they can be manufactured without partitions. Condensation hoods are the perfect choise for kitchens, where a large amount of water vapor is released from the equipment, such as steam kettles. The condensed water is conducted through the roof into a condensation channel where the water is collected. It may be necessary to drain the condensation drain to avoid overflowing of the drain.

Jeven

KONSTRUKTION

KONDENSKÅPA

2 Ex

5

Exhaust air connection with damper plates

3 Removable condens separator

Connection for supply air with silencer damper (JSKI)

MAINTENANCE

CLEANING

1

2

Cleaning of supply air diffusers JSKI

The supply air diffusers shall be cleaned in connection with cleaning the kitchen hood. The diffusers can be washed by hand or in a dishwasher.

The diffuser is easily disassembled by

- Lifting them up slightly
 - Pull the lower part towards you.

Cleaning of the hood surfaces

The surfaces of the hood should be cleaned in connection with other cleaning of the kitchen or if necessary. Detergents for stainless steel sheet and soft cloths must be used.

Cleaning of the condensate baffles

Condensate baffles in the hood should be disassembled by lifting them up from the hoods drip strip. Wear protective gloves to avoid cutting injuries. Then condensation plates are dished in a regular dishwasher and then reassembled to their places.

ADJUSTMENT OF SUPPLY AIR DEVICE

SUPPLY AIR HOOD JSKI

Jeven supply air columns deliver a controlled and flexible distribution of the supply air. The number of supply air devices is determined by the total flow to be supplied to the hood. The supply air diffusers are easy to disassemble for cleaning in the dishwasher.

Horizontal alignment of the supply air

Genom att justera läget på vertikala styrplåtar i spridaren kan luften regleras i sidled.

Undirectional thrown

Displacement thrown pattern

Bidirectional thrown

Vertical alignment of the supply air

By adjusting the position of the horizontal control plates in the spreader, the air can be vertically regulated.

Horizontal control plates

The air is directed forward

The air is directed upwards

The air is directed downwards

Adjustment of comfort nozzle

In each supply air columns there is a comfort nozzle that can be adjusted to give the kitchen staff extra supply air.

ADJUSTMENT

PLACEMENT OF MEASURING TAP AND LABELING WITH K-FACTORS

ADJUSTMENT

EXHAUST AIR

Above the condensate baffles there is a sliding damper for adjusting the exhaust air. One for each connection. All dampers must be fully open when starting the adjustment. NOTE! Measurement is allways done when the condensate baffles are mounted. The hoods damper is only for balancing the hoods exhaust air flow. A special damper in the duct or fan control are needed to adjust the total flow.

Condensate baffles type	Hood length /m										
		1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9
1/1	K1 m3/h	105	115	126	136	147	157	168	178	189	199
	K2 l/s	29,1	32.0	34.9	37.8	40.7	43.7	46.6	49.5	52.4	55.3
2/1	K1 m3/h	130	143	156	168	181	194	207	220	233	246
	K2 l/s	36.0	39.6	43.2	46.8	50.4	54.0	57.6	61.2	64.8	68.4
	K1 m3/h	155	170	186	201	217	232	248	263	279	294
	K2 l/s	43.0	47.3	51.6	55.9	60.2	64.5	68.8	73.1	77.4	81.7
	K1 m3/h	180	197	216	234	253	270	299	306	325	342
	K2 l/s	50.0	54.7	60.0	65.0	70.0	75.0	80.0	85.0	90.0	95.0
	K1 m3/h	205	224	246	267	287	308	328	359	371	389
	K2 l/s	57.0) 62.2	2 68.4	74.1	79.8	85.5	91.2	96.9	103	108

Condensate baffles type	Hood length /m											
		2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
1/1	K1 m3/h	210	220	230	241	251	262	272	283	293	304	314
	K2 l/s	58.2	61.1	64.0	66.9	69.8	72.8	75.7	78.6	81.5	84.4	87.3
2/1	K1 m3/h	259	272	285	298	311	324	337	350	363	376	389
	K2 l/s	72.0	75.6	79.2	82.8	86.4	90.0	93.6	97.2	101	104	108
	K1 m3/h	310	325	341	356	372	387	492	418	433	449	464
	K2 l/s	86.0	90.3	94.6	98.9	103	108	112	116	120	125	129
3/2	K1 m3/h	361	378	397	414	433	456	467	486	503	522	534
	K2 l/s	100	105	110	115	120	125	130	135	140	145	150
	K1 m3/h	410	432	450	472	493	518	533	554	569	601	616
	K2 l/s	114	120	125	131	137	144	148	154	158	167	7171

$$Q=Kx\sqrt{Pm}$$
 $Pm = (Q/K)^2Pa$

Condensate baffles type:

1/1 = One line of holes on top of the baffle and one line of holes on the bottom of the baffle

2/1 = Two lines of holes on top of the baffle and one line of holes on the bottom of the baffle 2/2 . Two lines of holes on the of the baffle and two lines of holes on the bottom of the baffle

2/2 = Two lines of holes on top of the baffle and two lines of holes on the bottom of the baffle

3/2 = Three lines of holes on top of the baffle and two lines of holes on the bottom of the baffle 4/2 = Four lines of holes on top of the baffle and two lines of holes on the bottom of the baffle

We reserve the right to make changes

ADJUSTMENT

SUPPLY AIR FLOW: JSKI

△ Pm(Pa) = Pressure measured in the measuring tap

	Hood height mm								
Supply air unit	540	540	330	330					
Width (mm)	200	500	200	500					
Height (mm)	500	500	290	290					
K1 (m³/h)	77.0	192	45.0	96.0					
K2 (I/s)	21.4	53.3	12.5	53.3					
Q = K x	Pm =	(Q/K) ²							

When measuring pressure, the supply air units must be mounted in the supply air device. The hood is supplied from factory with a preset pressure loss on the supply air of 25-35 Pa for the current flow. The damper is adjusted by removing the supply air units and by adapting the number of open holes in the damper.

